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ABSTRACT

Whole slide images (WSIs) in histopathology naturally provide multi-scale information. Several previous studies
have shown that leveraging such multi-scale information in histopathology image analysis is effective to improve
performance. Here, we propose making use of recent advances in contrastive learning and self-attention techniques
in multi-scale WSIs for cancer subtype classification using weak labels. The proposed method is based on a
Siamese architecture to share a common encoder network for images on different scales to reduce the model
size and training cost. In addition, we propose a variant of the self-attention module specifically designed for
multi-scale WSIs so that the network can focus on important textural features across different image scales.
We assess the efficacy of the proposed method via an ablation study on a real intrahepatic cholangiocarcinoma
dataset. The result confirms that our method outperforms conventional multi-scale models with fewer model
parameters.
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1. INTRODUCTION

Digitized histopathology images (i.e., whole slide images (WSIs)) are composed of several magnification levels
that commonly range from 1.25× to 40×.This allows pathologists to visualize and analyze the WSIs using a
computer by zooming in and out to find regions of interest without a microscope. Each scale of a WSI provides
a different kind of information as the tissues show differences in their structures when visualized at different
magnifications, as illustrated in Fig. 1.

Many existing histopathology image analysis studies are based only on a single scale, mostly at the highest
magnification.1–3 However, more recent studies have shown that leveraging multi-scale WSIs is effective to
improve the performance.4–6 A common strategy to leverage multi-scale WSIs in the workflow is using multiple
neural networks, where each of them is trained individually using the data from a specific magnification level.
Then, the intermediate result from each network is combined at the end to conduct the final downstream task
(i.e., classification). The drawback of this approach is the increasing model size and computational burden.

Recently, contrastive learning and attention modules have been widely adopted and proven to be robust
in histopathology image analysis .2,7, 8 The general concept of contrastive learning is enforcing similar images
to stay closer in the feature space (and vice versa), whereas that of the attention mechanism is focusing more
on the relevant context in the data. Although employing such techniques contributed to improving the model
performance, there has been no intensive study on leveraging multi-scale data with contrastive learning and
attention modules, which is the main motivation of this work.
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Figure 1. From a specific location in a WSI, we can extract one patch from Level 2, 16 patches from Level 1, and 256
patches from Level 0. These patches illustrate different morphological features at different levels (scales).

In this paper, we propose a novel multi-scale contrastive learning model and attention module that take ad-
vantage of the multiple magnification levels of WSIs specifically targeting the intrahepatic cholangiocarcinomas
(IHCCs) subtype classification using weak labels (i.e., per-slide labels). Inspired by the supervised contrastive
learning concept, we build a unified model that learns scale-invariant features from images at various magnifi-
cation levels using a single Siamese encoder network. We also propose multi-scale attention (MSA), a variant of
self-attention for multiple inputs, for multi-instance learning classification to make the model focus more on the
important patch features in different scales. We demonstrate the efficacy of the proposed method via an ablation
study on a real IHCC dataset.

2. RELATED WORK

2.1 WSI classification

Some previous studies employed only the highest magnification scale in their experiments. For example, Gao
et al.9 extracted patches from 40× magnification WSIs to classify the melanoma skin cancer WSIs into eight
tissue types and grades of invasive ductal carcinomas of breast tumor WSIs. Some more recent work employed
multi-scale learning; for example, in MS-DA-MIL,4 the authors carried out single-scale learning, which trained
the feature extractors for each scale separately in Stage 1, followed by the feature extractors from multiple scales
plugged into the final model for bag classification. Another study, DSMIL,5 proposed building a multi-scale
model by training each scale with a self-supervised contrastive learning approach, SimCLR .10 After that, the
authors extracted the features from each scale and then concatenated them. MS-DA-MIL used only two scales
(10× and 20×), whereas DSMIL used up to three different scales (1.25×, 5×, and 20×); however the model
with two scales outperformed the model with three scales. Therefore, instead of the conventional methods using
multiple single-scale models (Fig. 2(a)), we propose building a single unified model trained by images from various
scales (Fig. 2(b)).

2.2 Contrastive learning

SimTriplet7 proposed taking a multi-view of the WSIs as the inputs of the Siamese contrastive learning model
instead of using the self-augmentation method. This model maximized the similarities of the intra-sample and
inter-sample by using only positive pairs, without any negative pairs. Three augmented views from each adjacent
pair were generated as the inputs of the SimTriplet. Furthermore, DSMIL5 trained the feature extractors
using SimCLR10 first and used these pretrained feature extractors for their downstream tasks. The authors
trained SimCLR to maximize the similarities between the patches from the same WSI and applied random
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Figure 2. Comparison of (a) conventional multi-scale model, which consists of multiple single-scale models, and (b) our
proposed model, which consists of a single unified model to train images from various scales.

image augmentation to the model inputs. Our proposed method takes advantage of the WSIs that provide
multiple magnification levels instead of applying the scale augmentation method to obtain the synthetic positive
pairs.

2.3 Attention

Given the set of feature vectors extracted from a well-trained encoder, the transformer-based method11 has been
widely applied to the classification stage.8,12,13 With the combination of the local-patch feature vectors and
the corresponding position embedding, Huang et al.12 directly fed them to their transformer encoder so that
it could aggregate the local information. Meanwhile, TransMIL8 proposed that categorizing the feature vectors
into positive, negative, and uncertain instances can yield more useful information for their transformer module.
On the other hand, Kalra et al.13 proposed the FocAtt-MIL technique, which aggregates the prediction by the
learned focal factor. However, instead of aggregating the local features8,12 or using the group of local features
as the global information,13 we use both extracted features from different multi-scale levels, which means the
higher scale features can aggregate the information for the corresponding lower scale feature. It should also be
noted that our idea is different from the ”MIL aggregator” in DSMIL5 since they used the highest score feature
to mask the others in a bag of mixed features, whereas our attention mechanism distinguishes important higher
scale features related to the inquired lower scale features. Furthermore, the methods of using patch features have
been used in recent transformer-based papers14,15 but still in a self-attention fashion, which means aggregating
from the same scale level but not joint aggregating different scale levels at the same time, as in our model.

3. METHOD

Our proposed framework consists of two stages: (1) train a unified multi-scale model by using contrastive learning
and (2) classify the WSIs with the pretrained encoder from the first stage.
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(a) Stage 1: Multi-scale Training
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(b) Stage 2: Classification
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Figure 3. The overall framework of our proposed method. (a) Multi-scale training network. (b) Classification stage.

3.1 Data Pre-processing

We extracted the patches in 256 × 256 × 3 dimension from each WSI from three different scales: Level 0, with
a magnification scale of 20×; Level 1, with a magnification scale of 10×; and Level 2, with a magnification scale
of 5×. Patches with less than 50% of tissue coverage were discarded.

3.2 Stage 1: Multi-scale Training using Contrastive Learning

As shown in Fig. 3(a), we adopted a Siamese network as a baseline architecture for our multi-scale encoder
network, in which both the sister networks were made from the same architecture sharing the same parameters
(the weights of both networks are updated at the same time). Data augmentations such as random flip, rotation,
and contrast are first applied to the input images before feeding into the backbone network. Because the WSIs
are composed of multiple magnification scales, crop-and-scale augmentation is not used. Each sister network
consists of a backbone network (VGG1616) and a projection head, which is made up of two sets of a dense layer
with 1024 neurons and a batch normalization layer, followed by a dense layer with 256 neurons. The outputs
from both sister networks are the feature vectors in 256-dimension, used for the contrastive loss computation.

To make use of the multi-scale nature of WSIs, the model takes two different inputs from the same spatial
location. For example, if we take an image patch from Level α (i.e., the main patch), then its corresponding
patches in the higher magnification image (Level (α−1)) are taken. Then, positive pairs are made using patches
from the same location but at different scales or patches at the same scale but from different locations in the same
WSI. Negative pairs are made from patches from different classes but at the same scale as the main patch. The
purpose of creating the input to the encoder in this way is to make the model maximize not only the similarities
of the patches at a different scale from the same location but also the similarities of patches from the same WSI
and to minimize the similarities of the patches from different classes.



For encoder training, we adopted supervised contrastive learning (SCL)17 in our proposed framework. The
main difference between SCL and the general self-supervised contrastive learning is that it leverages additional
class label information to ensure that the feature distance between the elements from the same class becomes
small.

The SCL loss is formulated as follows:

LSCL =

M∑
i=1

− 1

Myi − 1

M∑
j=1

⊮ȳi=ȳj · log
exp(hi·hj/τ)

M∑
k=1

exp(hi·hk/τ)

()

where M indicates the number of samples in a mini batch, hi is the feature vector (256-dimensional) of the main
patch from Level α within a mini batch, hj is the feature vector of the corresponding patches from Level (α− 1)
or the patches from the same WSI as the main patch, and hk is the feature vector from other classes based on
the label ȳ. The label ȳ is the pair label, where 0 is assigned to negative pairs and 1 is assigned to positive
pairs. Furthermore, τ is a scalar temperature parameter. (·) is the inner dot product between the L2 normalized
projected feature of two feature vectors.

The initial learning rate is set to 1e-4 along with the exponential decay learning schedule with a decay rate
of 1e-6. Stochastic gradient descent (SGD) is employed as the optimizer. We train the models with 50 epochs,
and the models with the lowest validation loss are then saved to use in the downstream tasks.

3.3 Stage 2: Classification using Multi-scale Attention

In stage two, the encoder of the pretrained multi-scale model is then used in the downstream task. Our dataset
is a weak label dataset, in which only image-level labels are provided. Therefore, multiple instance learning
(MIL) is adopted to classify our dataset in the way of treating WSIs as bags that consist of a small number
of patches (instances). MIL assumes that a positive bag should include at least one positive instance, whereas
a negative bag should be made up of negative instances only. We randomly generate 50 bags for each WSI,
and each bag consists of the latent feature vectors (i.e., the output of the pretrained multi-scale encoder) of 100
patches (see Fig. 3(b)). We generate the bags with the extracted features of the Level α patches along with their
corresponding patches from Level (α − 1). After the bag formation, we classify the bags via a predictor which
composes of two multi-layer perceptrons (MLPs), each with 512 neurons and has ReLU activation in between
followed by a softmax layer before the output. For the final results, because 50 different bags are generated from
each WSI, the majority voting is used to obtain the final predicted class for each WSI. Binary cross-entropy loss
along with SGD as the optimizer is used in training the classification model.

3.3.1 Multi-scale attention (MSA)

To leverage the benefit of the multi-scale nature of WSI, we introduce a multi-scale attention (MSA) module
before the predictor module to exploit the relationship between multi-scale features. MSA module is a bottleneck
residual that has a multi-head attention (MHA) transformer layer11 in the middle (see Fig. 3 upper right). Unlike
the original self-attention module, which generates query, key, and value from the same input, our MSA module
accepts two inputs from different scales (Level α and (α − 1)). Specifically, after flattening the two last axes of
the two inputs, we have a token from the main patch at Level α and 16 tokens from 16 corresponding patches
at Level (α− 1). In the MHA layer, we assign the Level (α− 1) feature as the key and value, whereas the Level
α feature is assigned as the query. By using this scheme, with the coarse view in Level α, we can inquire the
meaningful information from the finer view in the level (α− 1) instead of combining them all and including the
self-attention mechanism. To reduce the computation cost in the MHA layer, we use the MLP layers to reduce
the size of the token’s feature to 2048, which means, in the MHA layer, there are 4 heads with dmodel = 2048
and dk = 128. See the MHA design by Vaswani et al.11 for more details. The output from the MHA layer is
enlarged and aggregated with the flattened Level α feature to form a residual connection.



Table 1. The classification performance on single scale dataset.

Area Level 0 Level 1 Level 2

WSI 0.6364 0.5879 0.5669
Tumor 0.7250 0.7441 0.7086

Table 2. The ablation study of classification performance with the proposed multi-scale pretrained model as the feature
extractor. (MS: Multi-scale, CL: Contrastive Learning, MSA: Multi-scale Attention. Note that the conventional (baseline)
multi-scale model has two encoders, whereas our multi-scale model has only one encoder to leverage two different scales.)

Method Area Level (1+0) Level (2+1) Encoder Size

Conventional MS
WSI 0.6081 0.5915

98M
Tumor 0.7398 0.7200

MS + CL (Ours)
WSI 0.5882 0.6250

49M
Tumor 0.7331 0.7026

MS + CL + MSA (Ours)
WSI 0.6415 0.5993
Tumor 0.7715 0.7166

4. RESULT

4.1 Dataset

We used an IHCC dataset consisting of 332 WSIs in total, collected from 168 patients in Seoul National University
hospital. IHCC is categorized into two subtypes: (1) small duct type (SDT) and (2) large duct type (LDT).
The classification of the duct type is highly related to the KRAS and IDH mutated genes. Based on the gene
mutation information, we select the WSIs with the wild type in the KRAS gene and mutated type in the IDH
gene, and the mutated type in the KRAS gene and wild type in the IDH gene, for the training set of the SDT
and LDT, respectively. For inference on the test set, we collected patches using two different strategies: one
is random sampling on the entire WSI and the other is random sampling only within the tumor area (region
annotations are provided).

4.2 Experimental Result

In this section, we compare the performance (accuracy measured over 10 iterations) of different models we tested.
We first conducted the single-scale experiments on three different scales (i.e., each model is trained using single-
scale data) and two different areas by using a pretrained VGG16 model to extract features for bag generation.
These bags were then classified with a predictor with same parameter setting as mentioned in Section 3.3. We
can see that the bags from the tumor area always outperformed those from the entire WSI by about 9% to 14%
(see Table 1).

For the WSI area, expectedly, the classification accuracy decreases as the magnification level (scale) lowers.
This is because the patches from the lower magnification level carry less information than those from higher
magnification level. On the other hand, the bags from the tumor area performed the best at the magnification
Level 1 rather than Level 0. Therefore, we can say that the highest level is not always the best for classification
even if it could provide the most detailed information. Among the different combinations of scale and area, the
best combination is the bags from the tumor area from Level 1, with an accuracy of 0.74.

Next, we conducted an ablation study of comparing multi-scale methods by adding the proposed components
one by one, starting from a baseline multi-scale method without contrastive learning (see Table 2). The baseline
conventional multi-scale model consists of multiple single scale models each of which is trained independently
with the SCL loss. Then, the features were extracted from multiple single-scale models and concatenated to form
the bags. The model size of the conventional multi-scale encoder is composed of 98 million parameters, which
is twice the size of our proposed multi-scale encoder, with only 48 million parameters. Unlike the encoders in
the conventional multi-scale model trained separately for each specific scale, our encoder is trained in a single
Siamese model. Note that our proposed MS + CL model performed comparably to the conventional multi-scale
models with only a half-size encoder due to the proposed multi-scale contrastive learning model. Each single
patch from level α comprises 16 patches from level (α-1), but not all 16 patches would carry the representative
features; hence, we proposed the MSA to further improve the classification of duct types. As shown in Table 2,
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Figure 4. Each patch from Level (α− 1) showed different weight from MSA model. (a-b) are the patches from Small duct
type and (c-d) are the patches Large duct type.

the MSA models outperformed both conventional multi-scale models and our proposed models without MSA
except for the Level (2 + 1) case; this is in line with what we observed in the single scale experiments that Level
0 and 1 show better performance than Level 2 (see Table 1). The models of Level (1 + 0) showed about 3%
to 6% performance improvement as compared with the conventional multi-scale model and MS + CL. Finally,
we observed that multi-scale models always performed better than single-scale models as expected. The Level 1
models improved 5% and 3% with the help of the MS + CL + MSA model in WSI and tumor areas, respectively.
For the Level 2 models, it increased 3% in the WSI area and 1% in the tumor area with the multi-scale model.
The weights of 16 patches from Level (α-1) have been extracted from the MSA model and illustrated as the
heatmap as showed in Fig. 4. We can see that the different patch from level (α-1) showed different weight in the
heatmap even they are from the same patch in level α.

5. CONCLUSION

In this study, we introduced a unified multi-scale model, in which the multi-scale WSIs are trained with a single
model instead of training multiple single-scale models. The proposed multi-scale model is about half of the
conventional multi-scale approach. Our results showed that our proposed multi-scale model yielded comparable
results to the conventional multi-scale model and helped in reducing the computational cost. Furthermore,
we propose the MSA module to attend to the multi-scale information to further improve the performance of
the duct type classification in IHCCs. In future work, we plan to extend our MSA to handle more than two
scales. Conducting in-depth analysis of constrastive learning and attention in the context of histopathology
image analysis is another future research direction.
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