CGAM: CLICK-GUIDED ATTENTION MODULE FOR INTERACTIVE PATHOLOGY
IMAGE SEGMENTATION VIA BACKPROPAGATING REFINEMENT

Seonghui Min

Won-Ki Jeong *

Department of Computer Science and Engineering, Korea University, Seoul, Korea

ABSTRACT

Tumor region segmentation is an essential task for the quanti-
tative analysis of digital pathology. Recently presented deep
neural networks have shown state-of-the-art performance
in various image-segmentation tasks. However, because of
the unclear boundary between the cancerous and normal re-
gions in pathology images, despite using modern methods,
it is difficult to produce satisfactory segmentation results in
terms of the reliability and accuracy required for medical
data. In this study, we propose an interactive segmentation
method that allows users to refine the output of deep neural
networks through click-type user interactions. The primary
method is to formulate interactive segmentation as an op-
timization problem that leverages both user-provided click
constraints and semantic information in a feature map us-
ing a click-guided attention module (CGAM). Unlike other
existing methods, CGAM avoids excessive changes in seg-
mentation results, which can lead to the overfitting of user
clicks. Another advantage of CGAM is that the model size
is independent of input image size. Experimental results on
pathology image datasets indicated that our method performs
better than existing state-of-the-art methods.

Index Terms— Interactive segmentation, digital pathol-
ogy

1. INTRODUCTION

Segmenting tumor area in whole-slide images (WSI) is an im-
portant task in digital pathology, as it serves as a basis for
the diagnosis of a target lesion. However, the difference in
visual features, including the color and texture of malignant
and normal regions, is insignificant in particular histopatho-
logical images. Because of this innate biological property,
even experts in this domain need considerable time to accu-
rately distinguish these areas with the naked eye. In addi-
tion, it is difficult to capture precise boundaries for classify-
ing malignant regions using conventional automated segmen-
tation methods that mostly rely on edges. To this end, interac-
tive segmentation modifies automated segmentation methods
to enable user interactions [1]. This allows users to quickly
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obtain high-quality segmentation results by providing inter-
actions that reflect their intentions.

Commonly used user-interaction types include bounding
boxes [2, 3], scribbles [4, 5], and clicks [6, 7, 8, 9]. Among
these, we specifically focused on click-based interactive seg-
mentation in which users provide positive/negative clicks to
differentiate between foreground and background regions.
Prior to deep learning, conventional approaches [3, 4, 5] con-
sidered interactive segmentation as an optimization problem.
Because semantic information has not been fully exploited
with many built-in heuristics, these methods require large
amounts of user interactions. Deep learning-based interactive
segmentation methods [9, 10] improve the segmentation ac-
curacy of deep neural networks [1 |, 12] by incorporating user
interactions. While showing outstanding performance com-
pared to conventional methods, existing deep learning-based
interactive segmentation methods rely heavily on high-level
semantic priors and perform poorly for object classes not seen
during training.

Recently, backpropagating refinement scheme (BRS) [6]
addressed this issue by integrating optimization-based and
deep learning-based methods. BRS sets the interaction maps
entered into the network as trainable parameters. By back-
propagating the loss calculated by prediction and user clicks,
BRS fine-tunes the interaction maps in an online manner.
Feature backpropagating refinement scheme (f-BRS) [7] is
an improvement to the previous method in terms of inference
time and computational budget by inserting a set of auxiliary
parameters after the intermediate network layer for optimiza-
tion. Backpropagation only through a subpart of the network
improves the efficiency of f-BRS. In a follow-up study, Lin
et al. [8] proposed generalized backpropagating refinement
scheme (G-BRS), advanced layer architectures that enable
more delicate refinement. However, the above methods op-
timize additional modules only through the minimization of
loss calculated by limited user interactions, causing unwanted
overall changes owing to overfitting.

In this study, we propose a new click-guided attention
module (CGAM) for BRS-based interactive segmentation.
CGAM addresses the overfitting issue of existing BRS-based
methods by directly receiving click maps and a feature map
from where it is inserted as a module input and utilizing them
for optimization. CGAM enforces the desired specification on
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Fig. 1. Overview of the proposed method, and the structure of CGAM. The user inputs a click where correction is required
in the segmentation result. CGAM takes click maps and an intermediate feature map as input. It weights the feature map
to highlight the target region of segmentation. By backpropagating the loss computed from user-provided clicks and output
prediction, the parameters of CGAM are updated to produce an improved segmentation result. This process is repeated each
time the user provides a new click. Red and green represent positive and negative clicks, respectively. The attention radius is

visualized with a circle.

the result of a deep learning model by restricting the feature
space with self-attention and the additional guidance of click
maps. Furthermore, in contrast to G-BRS, the model size of
CGAM is independent of the input image size, allowing the
method to easily handle large-scale images. We demonstrate
the segmentation performance of CGAM over existing deep
learning-based interactive segmentation refinement methods
on the PATP2019 challenge dataset [13].

2. METHOD

2.1. Architecture Overview

An overview of the proposed method is shown in Fig. 1. To
compare the proposed model, f-BRS, and G-BRS directly,
we chose the standard DeepLabV3+ with ResNet-101 con-
taining a distance maps fusion module (DMFM) proposed in
[7] as the basis architecture. As in [7, 8], CGAM is inserted
after the atrous spatial pyramid pooling (ASPP) layer in the
DeepLabV3+ decoder. CGAM modifies the feature map of
the corresponding location by receiving the feature map and
click maps as inputs. The output logits are generated as the
modified feature map passes through the rest of the network.
In this study, we define interactive segmentation as an opti-
mization problem and solve it with respect to the parameters
of CGAM. Thus, the optimization loss is computed from the
output logits and user-provided clicks. By backpropagating
the loss, CGAM is updated for better segmentation perfor-
mance in an online manner.

Assume f is a function implemented by the basis network.
With input image I and click maps C, the intermediate feature
map of the location where CGAM is inserted is defined as
g(I,C). Using h to denote a function that the network head
implements, f can be represented as f(I,C) := h(g(I,C)).
We express the whole process f with CGAM parameterized
by 6 inserted as follows:

fI,C;0) = h(0(g(1,C), C)). ()

We define a set of user-provided clicks as {(u;, v;, i, ;) }¥
where (u,v), l € {—1,1}, and r represent the coordinates,
label, and radius of each click, respectively. M € {0, 1}H W
is a binary mask of the newest click and selects the region
outside of r. The optimization problem is formulated as a
minimization for the following loss similar to that of [8]:

Li(I,Ct) = Héin Eicp1,4[maz(l; — FIL,Cy00) s, , 0)]

+AIM O (f(I,Ch;0i1) — F(I,C; 0.3, ()

where ® is Hadamard product, and ¢ € [1, N] is an inter-
action step. The first term enforces the correct output seg-
mentation corresponding to the user-provided clicks, and the
second term prevents excessive modification to avoid overfit-
ting. The scaling constant A\ regulates the trade-off between
the two terms.
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Fig. 2. Comparison of various BRS-based interactive segmentation results. Each method used the same number of clicks.

2.2. Click-Guided Attention Module

CGAM is a self-attention module that specializes in inter-
active segmentation, inspired by self-attention methods [14,
]. By receiving assistance from the additional guidance of
click maps, CGAM highlights feature responses in regions
reflecting user intention. Fig. 1 left illustrates the pipeline of
CGAM. By denoting the input feature map as g(I,C) = m €
Re*hw attention matrix o € RS ig obtained as follows:

a= YT (ReLU WECy + WEm)), 3)

where C; € R2*" represents click maps downsampled to
the resolution of m. The linear transformations with weight
matrices W € R2%3, W, € R¢*3, and (S R5%¢ are
implemented as a 1x 1 convolution. The output of CGAM, a
modified feature map m € Rexhw g then finally calculated
as follows:

m=m ® a. 4)

CGAM preserves the initial behavior of the network before it
learns through backpropagation by setting the initial value of
« to one.

It can be observed from the attention heat map in Fig. 1
that CGAM focuses on important regions by exploiting in-
formation in the click map. The attention matrix assigns
element-wise weights to the feature map, which enables local
refinement. This operation sets the CGAM free from the
dependency of the input image size on G-BRS.

3. EXPERIMENT

3.1. Data Description

The whole-slide image (WSI) dataset used in our experiment
was from the PAIP2019 challenge [13]. After scaling at 5x

magnification, because interactive refinement of segmenta-
tion results is mainly required at the boundary of the tumor,
patches with tumor areas accounting for 20% to 80% of the
total area were considered boundary regions and extracted.

3.2. Implementation Details

We trained our network on the pathology dataset with 5190
patches using the normalized focal loss proposed in [16]. We
sampled the clicks during training following the standard pro-
cedure of [9]. The maximum number of clicks per image was
set as 20, limiting the number of positive and negative clicks
to less than 10. We used the Adam optimizer with 5; = 0.9,
B2 =0.999, and trained the networks for 120 epochs. We set
the learning rate as 5 x 10~% for the first 100 epochs, and 5
x 107 for the last 20 epochs.

For the inference time optimization, we also used the
Adam optimizer with 81 = 0.9 and 85 = 0.999. We performed
back-propagation for 20 iterations for each click. We set
the learning rate as 5 x 1072 and X as 1. We conducted an
experiment on a Windows 10 PC equipped with an NVIDIA
RTX 3090 GPU.

3.3. Evaluation Protocol

For fair comparisons, we used the automatic click genera-
tion strategy proposed in [8]: The class of the following click
was determined based on whether the dominant prediction er-
ror type was false positive or false negative. The click was
placed at the point where the corresponding error region had
the maximum Euclidean distance from its boundary. The dis-
tance was set as the radius of the click. This process was
repeated until the target Intersection over Union (IoU) or the
maximum number of clicks was reached.
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Fig. 3. Comparison of the IoU scores with respect to the num-
ber of clicks added by a user.

Table 1. Evaluation results of pathology image dataset. The
best results are in bold.

Method NoC@85 NoC@90 NoF@85 NoF@90 SPC(s) Time (s)
f-BRS 11.59 15.43 55 89 0.053 107
G-BRS 7.70 12.67 23 58 0.049 81
CGAM 6.38 11.32 8 36 0.052 77

3.4. Evaluation Metrics

We set the target IoU as 85% and 90%. We limited the maxi-
mum number of clicks to 20. We reported the mean number of
clicks (NoC) required to achieve the target loU. We reported
the number of failures (NoF) indicating the number of cases
in which the target IoU was not reached with the maximum
number of clicks. We reported the second per click (SPC) to
measure the response time for each click. Finally, we reported
the total time required to process the entire dataset.

4. RESULTS

4.1. Comparison

We evaluated 131 patches of WSI whose initial predictions
had IoU scores between 50% and 70%. We compared CGAM
with f-BRS and G-BRS, state-of-the-art BRS-based methods.
For G-BRS, we selected the G-BRS-bmconv layer with the
best performance reported in [&].

Table 1 presents the average NoC, NoF, SPC, and total
time of the three methods for target IoUs of 85% and 90%.
CGAM outperformed the other methods in nearly all metrics.
The NoC results show that users can obtain satisfactory seg-
mentation masks with less effort using CGAM. From the NoF
results, as compared to the other methods, it is observed that
CGAM successfully reached the target IoU in most cases. For

Table 2. Ablation study of click map guidance. In each
method, CGAM takes proper click maps, random click maps,
and zero tensor as input.

Method NoC@85 NoC@90 NoF@85 NoF@90 SPC(s) Time (s)
Proper 7.18 11.82 11 36 0.050 77
Random 7.31 12.43 19 53 0.060 95
Zero 7.37 12.23 15 48 0.060 95

speed-related metrics, the SPC of CGAM was slightly slower
than that of G-BRS. However, CGAM reduced the total time
required to reach the target IoU with fewer clicks.

4.2. Ablation Study

We conducted an ablation study to assess how click maps
contribute to the performance of CGAM. We tested the fol-
lowing three scenarios; The first scenario received clicks on
the appropriate coordinates and classes, generated by an au-
tomatic click-generation strategy described in Subsection 3.3.
The second scenario assumed inappropriate (incorrect) clicks
by generating clicks on random coordinates and classes. The
third scenario assumed that no clicks were provided using a
zero tensor with the same shape as that of the click maps. As
shown in Table 2, CGAM achieved the best performance in
all metrics when proper click maps were provided. Consid-
ering that the results of random clicks are worse than those
of zero-tensor case, we can confirm that CGAM leverages the
information in the click maps for optimization.

4.3. Discussion

CGAM outperformed other methods in terms of both accu-
racy and time. In particular, the model size of CGAM is
fixed and constant regardless of the input size, unlike G-BRS,
which expands linearly in proportion to the height and width
of the input image; this decreases the number of parameters
from 93k to 84k even for small images with 400 x 400 pix-
els. These results show the efficiency of CGAM and fur-
ther demonstrate its potential for extending to multi-scale and
large image segmentation tasks (e.g., segmentation of WSI).

5. CONCLUSION

In this study, we proposed CGAM for interactive image seg-
mentation through back-propagating refinement. Exploiting
the information in click maps by using it as input, CGAM
increases the utility of user-provided clicks in interactive seg-
mentation tasks. Experiments showed the improved perfor-
mance of CGAM in pathology image segmentation as com-
pared to other state-of-the-art methods. In future work, we
plan to extend the current framework to address entire WSI
such that it can be flexibly applied in real-world situations.
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